::?E‘ -Em
‘0,00 (Hommal|aming [Grcat [Alarm]
000 m-
‘nI.:-'

III.'![I

L |_g o

Using Aspectd in Component-
Based Architectures
on the Server Side

Service Level Management based on Sirius Service Monitors
— Arno Schmidmeier —
Arno.Schmidmeier@sirius-eos.com

Sirius Software GmbH

April 2002

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Information about Sirius

 We sell a product suite for SLM

e This product suite consists from:
— a general usable component server,

— Huge assembled Components called
Monitor Units, which are made up from
a bunch of smaller components

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Successfully used

 In Commercial Project realized by the
Research Department

 TMF Catalysts

— P&P Contract/SLA Management within
UMTS

— SLM for Wireless IP
— UMTS-IP Interconnect & Content Settlement

e Two Customized Outsourcing
Service Monitors

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Initial Idea

Write only Businesslogic in a class

-> then apply some aspects to it and
you have a server component

-> You have the ideal separation
of businesscode and server specific code

-> You can change all server policies
by simply changing some aspects

Composition is easier, Compose the
Businesslogic then apply the aspects
and you have an aggregated new component

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




usage scenarios

Separate Business Code
and Framework Code

Move Framework Code to Aspects

(,Standard“ AOP-Design in
businesslogic)

New Architecture Design Pattern
— To simplify the integration with EAI-Tools

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Early adopter issues

e Team Communication:

— No common sense about good aspect
oriented design available

— No widespread- named design patterns

— No simply graphical Modelling notation
available

« Tool support urgently needed for less
skilled developers:
— No reliable debugger available
— Aspect Aware Refactoring Browser

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Achieved Results (1)

Initial Idea could be realized

Simpler architecture by increased
flexibility

“Code quality improved”

Class Hierarchy reflects the business
domain better

EAI-Integration got trivial and much
more performant

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Achieved Results (2)

e Enhancing a commercial OODBMS to
an ADBMS (aspect-oriented database
management system) is quite easy

Aspectd Is a great clue between
Core J2EE APIs, and Business classes

AspectJ and Core APIs are more
flexible, more efficient then “Standard”

J2EE architectures

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Achieved Results (3)

e Code Reduction:

— 50-90% in Components against ,plain Java“

— 25%-60% in Components against ,plain
Java“+ CORBA Interceptors + Java-
,Dynamic Proxies*

— 95% in Code dealing with EAIl-Integration

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Observations (1)

 Many abstract aspects,
share the same pointcuts

 We traded tangling code against
tangling pointcut definitions or tangling

pointcut reuse.

e Pointcut reuse could be increased by
separating pointcuts in signature
enumerations and sighature use points

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Observations (2)

 We wish therefore language
extensions for:
— a more efficient reuse of pointcut definitions

— More flexible ways to define the importance
of advices Many abstract aspects,
share the same pointcuts

e Quite a lot of OOP-Pattern should be
reworked or replaced by new AOP-
Patterns

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Sighature Enumeration & Signhature use points

Use Point Use Point Use Point
Call & this Call & target execution

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Component Based compilation versus one huge concept of the compilation unit

* Place the build jobs under configuration
management

One big CU is easier to set up then
several small ones, because AspectJ
Code is like coffee, it should be fresh
brewed

But: Separate one huge CU into several
smaller ones

e These small independent build jobs is
the only control for maintaining the
component structure

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Performance of ,Framework” Aspects

 We recognized no performance impact
on the server side:

— When we Separated Business Code
and Framework Code

— When we moved Framework Code
to Aspects

« The underlying technologies have
a much higher performance overhead
then aspectJ

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Conclusion

 Aspectd + Core J2EE APIs provide
a better alternative over standard
J2EE-architectures

* Quite a lot of the theoretical advantages

of AOD was verified in the praxis

e Some support for tangling pointcut
hierarchies should be added to AspectJ

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




Fevenue

1083359.2 .

FPerceived Loss

Service Level
Management
Solutions

based on
Sirius Service Monitors

WORLDWIDE HEADQUARTERS US HEADQUARTERS

Sirius Software GmbH Sirius Management Technologies Inc.
Kolpingring 18 PO Box 797587
82041 Oberhaching/Minchen Dallas, Texas 75248
Germany USA
Tel: +49 (0) 89 613676 0 Tel: +1 (972) 248 2667
Fax: +49 (0) 89 613 676 33 Fax: +1 (972) 250 6754

Sirius Software GmbH © 2002 WWW.Sirius-eos.com




