
Sirius Software GmbH © 2002 www.sirius-eos.com1Sirius Software GmbH © 200 www.sirius-eos.com1

Using AspectJ in Component-
Based Architectures

on the Server Side
Service Level Management based on Sirius Service Monitors

– Arno Schmidmeier –
Arno.Schmidmeier@sirius-eos.com

Sirius Software GmbH

April 2002

Sirius Software GmbH © 2002 www.sirius-eos.com2Sirius Software GmbH © 200 www.sirius-eos.com2

Information about Sirius

• We sell a product suite for SLM

• This product suite consists from:
– a general usable component server,
– Huge assembled Components called

Monitor Units, which are made up from
a bunch of smaller components

Sirius Software GmbH © 2002 www.sirius-eos.com3Sirius Software GmbH © 200 www.sirius-eos.com3

Successfully used

• In Commercial Project realized by the
Research Department

• TMF Catalysts
– P&P Contract/SLA Management within

UMTS
– SLM for Wireless IP
– UMTS-IP Interconnect & Content Settlement

• Two Customized Outsourcing
Service Monitors

Sirius Software GmbH © 2002 www.sirius-eos.com4Sirius Software GmbH © 200 www.sirius-eos.com4

Initial Idea

• Write only Businesslogic in a class

• -> then apply some aspects to it and
you have a server component

• -> You have the ideal separation
of businesscode and server specific code

• -> You can change all server policies
by simply changing some aspects

• Composition is easier, Compose the
Businesslogic then apply the aspects
and you have an aggregated new component

Sirius Software GmbH © 2002 www.sirius-eos.com5Sirius Software GmbH © 200 www.sirius-eos.com5

usage scenarios

• Separate Business Code
and Framework Code

• Move Framework Code to Aspects

• („Standard“ AOP-Design in
businesslogic)

• New Architecture Design Pattern
– To simplify the integration with EAI-Tools

Sirius Software GmbH © 2002 www.sirius-eos.com6Sirius Software GmbH © 200 www.sirius-eos.com6

Early adopter issues

• Team Communication:
– No common sense about good aspect

oriented design available
– No widespread- named design patterns
– No simply graphical Modelling notation

available

• Tool support urgently needed for less
skilled developers:
– No reliable debugger available
– Aspect Aware Refactoring Browser

Sirius Software GmbH © 2002 www.sirius-eos.com7Sirius Software GmbH © 200 www.sirius-eos.com7

Achieved Results (1)

• Initial Idea could be realized

• Simpler architecture by increased
flexibility

• “Code quality improved”

• Class Hierarchy reflects the business
domain better

• EAI-Integration got trivial and much
more performant

Sirius Software GmbH © 2002 www.sirius-eos.com8Sirius Software GmbH © 200 www.sirius-eos.com8

Achieved Results (2)

• Enhancing a commercial OODBMS to
an ADBMS (aspect-oriented database
management system) is quite easy

• AspectJ is a great clue between
Core J2EE APIs, and Business classes

• AspectJ and Core APIs are more
flexible, more efficient then “Standard”
J2EE architectures

Sirius Software GmbH © 2002 www.sirius-eos.com9Sirius Software GmbH © 200 www.sirius-eos.com9

Achieved Results (3)

• Code Reduction:

– 50-90% in Components against „plain Java“

– 25%-60% in Components against „plain
Java“+ CORBA Interceptors + Java-
„Dynamic Proxies“

– 95% in Code dealing with EAI-Integration

Sirius Software GmbH © 2002 www.sirius-eos.com10Sirius Software GmbH © 200 www.sirius-eos.com10

Observations (1)

• Many abstract aspects,
share the same pointcuts

• We traded tangling code against
tangling pointcut definitions or tangling
pointcut reuse.

• Pointcut reuse could be increased by
separating pointcuts in signature
enumerations and signature use points

Sirius Software GmbH © 2002 www.sirius-eos.com11Sirius Software GmbH © 200 www.sirius-eos.com11

Observations (2)

• We wish therefore language
extensions for:
– a more efficient reuse of pointcut definitions
– More flexible ways to define the importance

of advices Many abstract aspects,
share the same pointcuts

• Quite a lot of OOP-Pattern should be
reworked or replaced by new AOP-
Patterns

Sirius Software GmbH © 2002 www.sirius-eos.com12Sirius Software GmbH © 200 www.sirius-eos.com12

Signature Enumeration & Signature use points

Sirius Software GmbH © 2002 www.sirius-eos.com13Sirius Software GmbH © 200 www.sirius-eos.com13

Component Based compilation versus one huge concept of the compilation unit

• Place the build jobs under configuration
management

• One big CU is easier to set up then
several small ones, because AspectJ
Code is like coffee, it should be fresh
brewed

But: Separate one huge CU into several
smaller ones

• These small independent build jobs is
the only control for maintaining the
component structure

Sirius Software GmbH © 2002 www.sirius-eos.com14Sirius Software GmbH © 200 www.sirius-eos.com14

Performance of „Framework“ Aspects

• We recognized no performance impact
on the server side:
– When we Separated Business Code

and Framework Code
– When we moved Framework Code

to Aspects

• The underlying technologies have
a much higher performance overhead
then aspectJ

Sirius Software GmbH © 2002 www.sirius-eos.com15Sirius Software GmbH © 200 www.sirius-eos.com15

Conclusion

• AspectJ + Core J2EE APIs provide
a better alternative over standard
J2EE-architectures

• Quite a lot of the theoretical advantages
of AOD was verified in the praxis

• Some support for tangling pointcut
hierarchies should be added to AspectJ

Sirius Software GmbH © 2002 www.sirius-eos.com16Sirius Software GmbH © 200 www.sirius-eos.com16

WORLDWIDE HEADQUARTERS

Sirius Software GmbH
Kolpingring 18

82041 Oberhaching/München
Germany

Tel: +49 (0) 89 613 676 0
Fax: +49 (0) 89 613 676 33

US HEADQUARTERS

Sirius Management Technologies Inc.
PO Box 797587

Dallas, Texas 75248
USA

Tel: +1 (972) 248 2667
Fax: +1 (972) 250 6754

Service Level
Management

Solutions

based on
Sirius Service Monitors

